Каталог

Что такое фотосинтез? Влияние углекислого газа CO2 на скорость фотосинтеза. Краткое пособие

Фотосинтез — сложный химический процесс преобразования энергии видимого света в энергию химических связей органических веществ при участии фотосинтетических пигментов (хлорофилл у растенийбактериохлорофилл у бактерий и бактериородопсин у архей).

Фотосинтез — это процесс, благодаря которому существует большинство живых организмов на нашей планете. Фотосинтез — процесс образования органических веществ из углекислого газа (CO2) и воды (H2O), протекающий с использованием солнечной энергии.

Растение вырабатывает глюкозу и кислород. Для фотосинтеза растению необходимы вода, углекислый газ и свет: растение использует свет в качестве энергии для производства кислорода и глюкозы из воды и углекислого газа. Это основные строительные блоки, необходимые растению для роста.

Бесхлорофилльный фотосинтез

Система бесхлорофилльного фотосинтеза отличается значительной простотой организации, в связи с чем предполагается эволюционно первичным механизмом запасания энергии электромагнитного излучения. Эффективность бесхлорофилльного фотосинтеза как механизма преобразования энергии сравнительно низка (на один поглощённый квант переносится лишь один H+).

Хлорофилльный фотосинтез

Хлорофилльный фотосинтез отличается от бактериородопсинового значительно большей эффективностью запасания энергии. На каждый эффективно поглощённый квант излучения против градиента переносится не менее одного H+, и в некоторых случаях энергия запасается в форме восстановленных соединений (ферредоксин, НАДФ).

Фотосинтез — процесс с крайне сложной пространственно-временной организацией.

Разброс характерных времен различных этапов фотосинтеза составляет 19 порядков: скорость процессов поглощения квантов света и миграции энергии измеряется в фемтосекундном интервале (10−15 с), скорость электронного транспорта имеет характерные времена 10−10—10−2 с, а процессы, связанные с ростом растений, измеряются днями (105—107 с).

Также большой разброс размеров характерен для структур, обеспечивающих протекание фотосинтеза: от молекулярного уровня (10−27 м3) до уровня фитоценозов (105 м3).

В фотосинтезе можно выделить отдельные этапы, различающиеся по природе и характерным скоростям процессов:

  • фотофизический;
  • фотохимический;
  • химический:
    • реакции транспорта электронов;
    • «темновые» реакции или циклы углерода при фотосинтезе.

 

Лист

Фотосинтез растений осуществляется в хлоропластах — полуавтономных двухмембранных органеллах, относящихся к классу пластид.

Хлоропласты могут содержаться в клетках стеблей, плодов, чашелистиков, однако основным органом фотосинтеза является лист. Он анатомически приспособлен к поглощению энергии света и ассимиляции углекислоты. Плоская форма листа, обеспечивающая большое отношение поверхности к объёму, позволяет более полно использовать энергию солнечного света. Вода, необходимая для поддержания тургора и протекания фотосинтеза, доставляется к листьям из корневой системы по ксилеме — одной из проводящих тканей растения. Потеря воды в результате испарения через устьица и в меньшей степени через кутикулу (транспирация) служит движущей силой транспорта по сосудам. Однако избыточная транспирация является нежелательной, и у растений в ходе эволюции сформировались различные приспособления, направленные на снижение потерь воды.

Отток ассимилятов, необходимый для функционирования  цикла Кальвина, осуществляется по флоэме. При интенсивном фотосинтезе углеводы могут полимеризоваться, и при этом в хлоропластах формируются крахмальные зёрна. Газообмен (поступление углекислого газа и выделение кислорода) осуществляется путём диффузии через устьица (некоторая часть газов движется через кутикулу).

Фотосинтез на тканевом уровне

На тканевом уровне фотосинтез у высших растений обеспечивается специализированной тканью — хлоренхимой. Она располагается близ поверхности тела растения, где получает достаточно световой энергии. Обычно хлоренхима находится непосредственно под эпидермой. У растений, растущих в условиях повышенной инсоляции, между эпидермой и хлоренхимой может располагаться один или два слоя прозрачных клеток (гиподерма), обеспечивающих рассеивание света. У некоторых тенелюбивых растений хлоропластами богата и эпидерма (например, кислица). Часто хлоренхима мезофилла листа дифференцирована на палисадную (столбчатую) и губчатую, но может состоять и из однородных клеток. В случае дифференцировки наиболее богата хлоропластами палисадная хлоренхима.

Хлоропласты в клетках листа

Хлоропласты

Хлоропласты отделены от цитоплазмы двойной мембраной, обладающей избирательной проницаемостью. Внутреннее пространство хлоропласта заполнено бесцветным содержимым (стромой) и пронизано мембранами (ламеллами), которые, соединяясь друг с другом, образуют тилакоиды, которые, в свою очередь, группируются в стопки, называемые гранами. На мембранах тилакоидов располагаются молекулы хлорофилла и других вспомогательных пигментов (каротиноиды). Поэтому их называют фотосинтезирующими мембранами. Внутритилакоидное пространство отделено и не сообщается с остальной стромой; предполагается также, что внутреннее пространство всех тилакоидов сообщается между собой. Световые стадии фотосинтеза приурочены к мембранам, автотрофная фиксация CO2 происходит в строме.

В хлоропластах имеются свои ДНК, РНК, рибосомы  седиментацией типа 70 S), идёт синтез белка (хотя этот процесс и контролируется из ядра). Они не синтезируются вновь, а образуются путём деления предшествующих. Всё это позволило считать их потомками свободных цианобактерий, вошедших в состав эукариотической клетки в процессе симбиогенеза.

Хлорофилл имеет два уровня возбуждения (с этим связано наличие двух максимумов на спектре его поглощения): первый связан с переходом на более высокий энергетический уровень электрона системы сопряжённых двойных связей, второй — с возбуждением неспаренных электронов азота и магния порфиринового ядра. При неизменном спине электрона формируются синглетные первое и второе возбуждённые состояния, при изменённом — триплетное первое и второе.

Хлорофилл выполняет две функции: поглощения и передачи энергии. Более 90 % всего хлорофилла хлоропластов входит в состав светособирающих комплексов (ССК), выполняющих роль антенны, передающей энергию к реакционному центру фотосистем I или II. Помимо хлорофилла, в ССК имеются каротиноиды, а у некоторых водорослей и цианобактерий — фикобилины, роль которых заключается в поглощении света тех длин волн, которые хлорофилл поглощает сравнительно слабо.

Сложноцветное изображение, показывающие глобальное распределение фотосинтеза, включая фитопланктон и наземную растительность

Фотосинтез составляет энергетическую основу всего живого на планете, кроме хемосинтезирующих бактерий.

Фотосинтез совершается в зеленых частях наземных растений и в водорослях. За один год зеленые водоросли выделяют в атмосферу Земли 3,6⋅1011 тонн кислорода, что составляет 90% всего кислорода, вырабатываемого в процессе фотосинтеза на Земле. Фотосинтез — самый массовый биохимический процесс на Земле[7].

Возникновение на Земле более 3 млрд лет назад механизма расщепления молекулы воды квантами солнечного света с образованием O2 представляет собой важнейшее событие в биологической эволюции, сделавшее свет Солнца главным источником энергии биосферы.

Фототрофы обеспечивают конверсию и запасание энергии термоядерных реакций, протекающих на Солнце, в энергию органических молекул. Солнечная энергия при участии фототрофов конвертируется в энергию химических связей органических веществ. Существование гетеротрофных организмов возможно исключительно за счёт энергии, запасённой фототрофами в органических соединениях. При использовании энергии химических связей органических веществ гетеротрофы высвобождают её в процессах дыхания и брожения.

Фотосинтез является основой продуктивности как сельскохозяйственных растений, так и животной пищи.

Энергия, получаемая человечеством при сжигании биотоплива (дрова, пеллеты, биогаз, биодизель, этанол, метанол) и ископаемого топлива (уголь, нефть, природный газ, торф), также является запасённой в процессе фотосинтеза.

Фотосинтез служит главным входом неорганического углерода в биогеохимический цикл.

Большая часть свободного кислорода атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни существовать на суше.

Эффективность фотосинтеза — доля световой энергии, преобразуемая организмами в химическую в процессе фотосинтеза. Фотосинтез можно упрощённо описать с помощью химической реакции

2О + 6CO2 + энергия → C6H12O6 + 6О2

Начиная с солнечного света, падающего на лист:

  • 47 % энергии утрачивается, так как часть фотонов находится за пределами диапазона в 400—700 нм (если считать, что хлорофилл поглощает фотоны от 400 до 700 нм с эффективностью 100 %)
  • 30 % теряется вследствие неполного поглощения фотонов хлоропластами, их отражения или поглощения другими компонентам клетки
  • 24 % поглощенной энергии теряется из-за переноса энергии коротковолновых фотонов до уровня 700 нм
  • 68 % используемой энергии теряется при превращении в D-глюкозу
  • 35-45 % глюкозы потребляется листьями в процессах дыхания и фотодыхания.

Говоря другими словами: 100 % солнечного света → биодоступная радиация (400—700 нм) составляет 53 %, а 47 % оставшейся радиации не используется → 30 % фотонов теряются из-за неполной абсорбции 37 % (поглощенной энергии фотонов) → 24 % теряется в ходе переноса по антенным комплексам до уровня энергии 700 нм, оставляя 28,2 % энергии света, собранной хлорофиллом → 32 % преобразуются в АТФ и НАДФН, а затем в D-глюкозу, оставляя 9 % (сахар) → 35-40 % сахара потребляется листьями в процессе дыхания и фотодыхания, 5,4 % энергии идёт на чистый прирост биомассы.

Многие растения тратят большую часть оставшейся энергии на рост корней. Большинство культурных растений запасают от ~0,25 % до 0,5 % энергии солнечного света в виде биомассы (кукурузные зерна, картофельный крахмал и др.). Исключением является только сахарный тростник, который способен запасать до 8 % солнечной энергии.

Интенсивность фотосинтеза линейно возрастает с увеличением интенсивности света, но постепенно достигает насыщения. В зависимости от культуры, при освещенности свыше 10000-40000 люкс (подразумевается солнечный свет) прекращается нарастание фотосинтеза. Таким образом, большинство растений может использовать только ~10-20% от общей энергии полуденного солнечного света. Однако дикие растения (в отличие от лабораторных образцов) имеют много избыточных, хаотически ориентированных листьев. Это даёт возможность держать среднюю освещенность каждого листа значительно ниже уровня полуденного пика освещённости, что позволяет растению достичь уровня ближе к ожидаемым результатам лабораторных испытаний, при относительно ограниченной освещённости.

Только если интенсивность света выше определённого значения, называемого световой точкой компенсации, растение усваивает больше углекислого газа, чем выделяет в результате клеточного дыхания.

Системы измерения фотосинтеза не способны непосредственно измерять количество света, поглощенное листом. Тем не менее, кривые отклика на свет, которые можно измерить и построить, позволяют сравнивать эффективность фотосинтеза у разных растений.

Комментарии
Отзывов еще никто не оставлял
Товары, упомянутые в статье
В наличии
Предзаказ
арт. qbhrs240
Samsung LM301H EVO | Full Spectrum +Deep Red +Far Red(IR)...
28 600 ₽ 25 740 ₽
Нет в наличии
Предзаказ
арт. tnbeco2
• СО2 - углекислый газ.• Препарат сделан исключительно из 100%...
4 629 ₽
Нет в наличии
Предзаказ
арт. tnbeco2s
• Благодаря сменному наполнителю можно повторно использовать бутылку от СО2,...
2 682 ₽
Нет в наличии
Предзаказ
арт. hbagco2
HighBag - мешок-культиватор углекислого газа. Он состоит из грибного мицелия...
3 727 ₽
Предзаказ
Предзаказ успешно отправлен!
Имя *
Телефон
Email *
Сообщение *
Добавить в корзину
Перейти в корзину
Обратный звонок
Запрос успешно отправлен!
Имя *
Телефон
Почта
Сообщение *
Заказ в один клик